V-STARS Measurement Report

Introduction:

The following report is a summary of the V-STARS work carried out at an Aerospace facility in Winnipeg Canada. Four measurements were undertaken using the V-STARS camera system and the PRO-SPOT

target projection system.

The measurements undertaken are summarized in TABLE 1

Object	Description	Requirements	Equipment
Boeing Wing to body fairing Jig	Approximately 20' long and 5' high.	 Verify the location of Water Line, Butt Line and Station Pads. Determine location of End Stops Determine Best-fit Waterline plane. Determine best-fit Butt Line. 	V-STARS/S V-STARS/M
	TABLE 1 – Mea	asurement Summary	

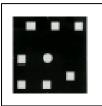
Object	Description	Requirements	Equipment
GE F110 Frame	Approximately 40" diameter. Made up of 17 vanes.	 Determine best-fit planes for key surfaces. Determine centerline and radius of center circle. Determine the location of 17 hole centerlines Determine out circle radius and center point. Determine best-fit planes through 17 vanes. Compute angular fit between centerlines and vane planes. Additional geometric analysis. 	V-STARS/S
GKN Search light lay up mould	A small (15") lay up mould	 Align to tooling holes Measure edge of part, scribe lines, and other data. Measure surface data Compare to IGES model 	V-STARS/S V-STARS/M PRO-SPOT
EH101 Foam inlet piece		 Measure surface data Compare to IGES model 	V-STARS/S PRO-SPOT

Object 1 - Boeing Wing to Body Fairing Jig

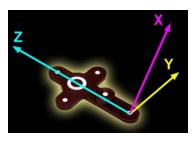
Documentation:

The following documentation is included in this report for this measurement.

- A report outlining methodology and results.
- Best-fit plane and line data.
- End Stop and additional data.


Measurement Procedure:

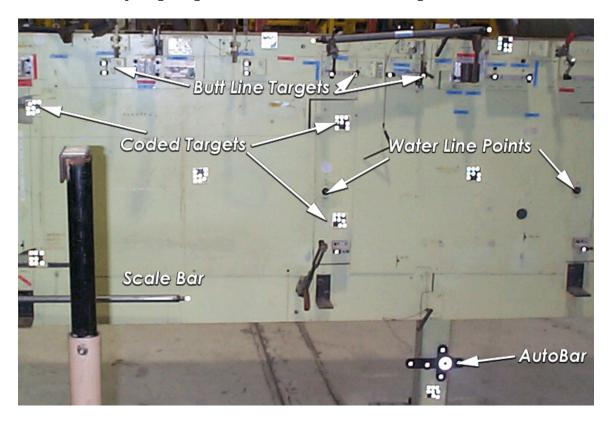
Targeting:



In order to meet the measurement objectives outlined earlier it was necessary to target the jig. In general, targets are placed on points or surfaces that are of interest. For surfaces, strips of retro-reflective tape of variable pitch and dot size are commonly used. They are relatively cheap, disposable and easy to apply. To coordinate tooling datums such as bushed holes or button datums, tooling targets are used. These come in a variety of shank and dot sizes. They are also available in variable orientations. For this measurement adapter sleeves were not available to adapt the 1" buttons to a tooling target. These buttons were measured using the V-STARS/M system and a hand-held probe. For a genuine periodic inspection program it would be advisable to have a collection of special targeting to adapt the buttons.

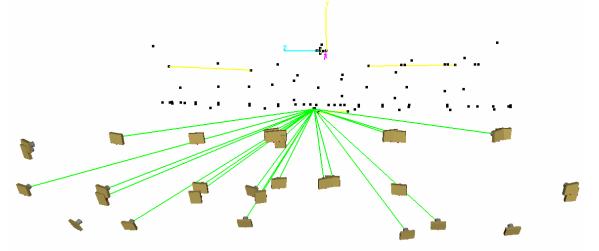
To automate the measurement process it was necessary to add "coded" targets to the jig. These targets are automatically detected and help the software determine the location and orientation of the camera at the time the photo was taken. They also help tie the entire object into a uniform coordinate system.

The codes were placed along the length of the front and rear faces of the jig.


The initial coordinates system and scale is determined via the AutoBar. The AutoBar used by the V-STARS system is a fixture with five targets arranged in the form of a cross. The target's known coordinates are used by the AutoMatch procedure to determine the camera's orientation relative to the AutoBar. The AutoBar is securely attached on or near the measured object, preferably in a highly visible

location. The AutoBar's default coordinate system has its origin at Target 1 at the bottom of the AutoBar. The positive Z-axis goes through Target 3 at the top of the bar. The positive X-axis is up out of the AutoBar. The diagram on the left shows both the AutoBar and its coordinate system

To scale a photogrammetric measurement, there must be at least one known distance. Normally this distance comes from a calibrated coded graphite scale bar or invar scale bar (Refer to adjacent image). Typically multiple scales are used for redundancy. Two scale bars were used to complete this measurement.


Some of the key targeting features are shown in the image below: -

Photography:

The photography is carried out once the object targeting is completed. Put simply, the aim of the photography is to record each of the targeted points in as many images as possible from as wide a range of angles as possible. To improve the accuracy of the measurement, generally photos are taken both close to the ground and from an elevated position. A total of 32 photographs were taken of the jig. The number of photos taken depends on the complexity of the measurement and accuracy requirements.

The photography for the jig was completed in approximately 2 minutes. Camera station locations for the measurement are shown in the diagram below. Also shown is a sample intersection pattern for a point. Each of the green lines represents an observation to that point from the corresponding camera station.

Processing:


Once the photography has been completed the images are transferred to the system laptop. The images are stored on a PCMCIA hard drive and V-STARS accesses these images directly from the drive.

Almost all of the measurement process is automated. The images are processed and the coordinates extracted by the "AutoMeasure" command. A typical AutoMeasure dialog box is shown on the right. The AutoMeasure command will open each of the images, determine the camera location, find new target points and finally adjust all the measurements in the "Bundle Adjustment". At the conclusion the user is left with the XYZ

Measure Project Status: Press the Activity: Pictures	begin o	r continui	e buttor	n to scan p	ictures	
Measured: 106 of	107	Nur	nber Le	ft: 1		
Picture	Points	Codes	Bars	RMS		
🔣 Frame001.pic	218	10	1	0.38um		
🔣 Frame002.pic	190	14	1	0.46um		
🔣 🔛 Frame003.pic	250	15	1	0.42um		
🔣 Frame004.pic	186	12	1	0.36um		
🔣 Frame005.pic	247	17	1	0.37um		
🔣 Frame006.pic	225	16	1	0.37um		
🔣 Frame007.pic	120	10	1	0.35um		
Frame008.pic	162	13	1	0.39um		
Points Total: 787 Matched: 75 Codes: 77 Bars: 1						
Find new points Solve picture stations Attended Mode						
<u>B</u> egin	<u>C</u> ontinu	e			Close	

coordinates for all the target points in the network. The AutoMeasure procedure is very powerful as it allows the user to continue working while it processes the data. It also means that relatively unskilled workers can be used to process the data.

The AutoMeasure routine will assign random labels to the points it finds. These labels start with the key word "Target" followed by a number. If specific labeling is required the random labels can be easily changed to labels defined by the user. This is possible in both the picture view and the graphical 3D view. For this particular project it was necessary to re-label the points so that analysis could be simplified.

Seen below is an image taken as part of the jig measurement.

The green crosses represent points that have been located in this particular image. Note that the image appears a little dark and difficult to see. This is intentional as the best photogrammetric measurements are made on images that have dark backgrounds and bright targets. One of these targets is shown in the zoom window in the corner. If the scale bar is visible then a yellow line will be drawn between the two end points.

Results:

The following is a summary of the measurement statistics from the measurement of the jig

No. of photos	32	
No. of points	86	
No. of scales	3	
Scale Agreement	0.001	3"
Accuracy RMS(") X,Y,Z	Х	0.0009
	Y	0.0004
	Z	0.0006

A typical point listing is shown below.

∠V-STARS - [nl ¥ Eile Project	kk block front.pr.j] <u>M</u> Mode <u>C</u> ommand	P <u>i</u> cture	<u>V</u> iew <u>T</u> o	ols <u>W</u> ind	low <u>H</u> elp				
⊕ ← → M X									
🔏 nkk block fron [.]	Point Label	×	У	Z	Sigma X	Sigma V	Sigma Z	Offset	Desc
🗄 👩 Cameras	💠 AUTOBAR1	0.0002	-0.0000	-0.0002	0.0001	0.0000	0.0000	0.0000	
🗉 📴 Pictures	💠 AUTOBAR2	0.0002	-0.0507	0.1139	0.0001	0.0000	0.0000	0.0000	
30° Data	💠 AUTOBAR3	0.0000	0.0000	0.1773	0.0001	0.0000	0.0000	0.0000	
⊡~30 Final Bu	💠 AUTOBAR4	0.0000	0.0507	0.1140	0.0001	0.0000	0.0000	0.0000	
	💠 AUTOBAR5	0.0128	0.0000	0.0569	0.0001	0.0000	0.0000	0.0000	
	💠 AUTOBAR6	0.0001	0.0001	0.1272	0.0001	0.0000	0.0000	0.0000	
Poin	💠 BP1	-2.4124	0.0070	9.8901	0.0006	0.0002	0.0002	0.0000	
🕀 🌪 Auto	💠 BS1	-2.3785	0.7986	-9.7041	0.0002	0.0001	0.0001	0.0000	
主 📠 Mea:	💠 CODE1	-2.6836	4.2835	4.8204	0.0002	0.0002	0.0001	0.0000	
⊕…3D Final Bu	💠 CODE2	0.3899	1.9055	-8.4028	0.0002	0.0002	0.0002	0.0000	
⊞3D Sokkia p	💠 CODE5	-1.0329	0.7115	-3.9881	0.0001	0.0001	0.0001	0.0000	
	💠 CODE6	-0.1347	-0.2348	-9.2510	0.0001	0.0001	0.0001	0.0000	
	💠 CODE7	-2.0924	-0.7831	2.8637	0.0001	0.0000	0.0001	0.0000	
	💠 CODE8	-12.2461	6.7397	-1.5250	0.0003	0.0001	0.0001	0.0000	
⊡ 3D V-STAR	💠 CODE9	-2.7518	4.0206	3.0958	0.0003	0.0003	0.0001	0.0000	
	💠 CODE10	0.3867	1.7759	-5.9284	0.0002	0.0001	0.0001	0.0000	
	💠 CODE11	-1.5465	4.0758	0.2547	0.0001	0.0001	0.0001	0.0000	
- 🥕 Scale Bars	💠 CODE13	-2.7290	4.3392	-3.5758	0.0003	0.0002	0.0001	0.0000	
@ Recycle Bir	💠 CODE14	-12.2748	6.6771	-3.3706	0.0002	0.0001	0.0001	0.0000	
	💠 CODE15	-2.4332	3.3067	-0.9534	0.0002	0.0001	0.0001	0.0000	
	💠 CODE17	-2.3241	3.9971	-5.2726	0.0003	0.0002	0.0001	0.0000	
	💠 CODE18	-12.8074	4.2349	0.2771	0.0002	0.0001	0.0001	0.0000	
	💠 CODE19	-13.2119	2.4353	1.4138	0.0001	0.0000	0.0001	0.0000	
	💠 CODE20	-12.2666	6.4742	3.7455	0.0003	0.0001	0.0001	0.0000	
	💠 CODE21	-12.4317	5.8322	1.0635	0.0003	0.0001	0.0001	0.0000	
	💠 CODE22	-12.5722	5.0806	5.0848	0.0002	0.0001	0.0001	0.0000	
	A /05020	12 6020	5 7440	A 101A	0 0000	0.0001	0.0001	0 0000	

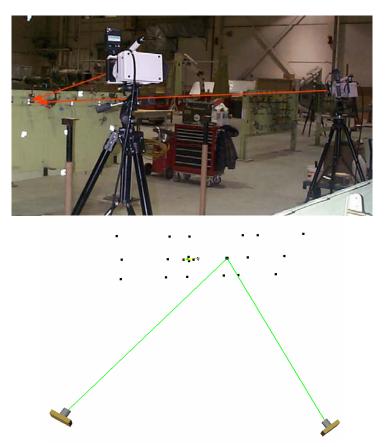
This point data can be analyzed within the V-STARS' SOLIDS module, easily exported to almost any CAD platform or other analysis program. For this particular project, the analysis was completed in SOLIDS.

SOLIDS is the geometric analysis module of V-STARS. For example, consider a simple function like determining the distance between two points. Computing the point-to-point distance is as simple as highlighting the two points and pressing "d". The result appears on the screen and is also written to a report file.

Calculation of the Best-fit plane is also very simple. The plane points are highlighted and the "P" key is pressed. The plane dialog is shown in the adjacent image. The dialog gives you a few options and also reports the results of the operation.

Similarly, best-fit lines, circles, spheres etc. can also be calculated. SOLIDS also has the ability to measure between objects. For example, by selecting a point and a plane the normal distance can be computed. This makes SOLIDS a very useful analysis tool.

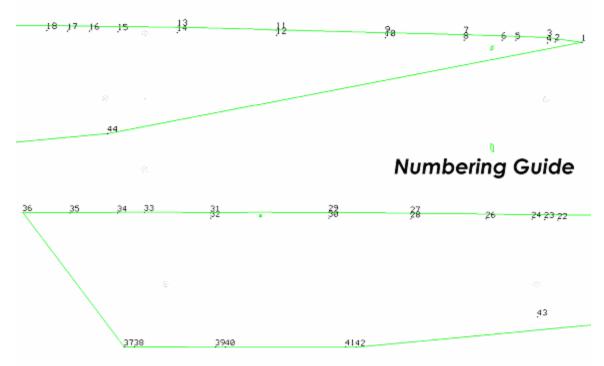
Plane Parameters	s	
Name: NewPlan	e12	
A: -0.0008		
B: -0.0039		
C: 1.0000		
D: 16.3405		
Rejection Limit:	0.0040	
Final RMS:	0.0011	
Points Accepted:	8	
Points Rejected:	0	
🗖 Create Templa	te	Offset:
Label	Residuals	
💠 CODE118	0.0017	
🔹 💠 NUGGET118	_1 0.0004	
🔹 💠 NUGGET118		
🔹 🗣 NUGGET118	_14 0.0011	-
0	к	Cancel


Point Probing – M Mode:

In order to establish the button center point locations it was necessary to

configure the system for use in M or Multi camera mode. In this mode two or more cameras are used to determine the location of a wireless hand held probe. The use of these probes is typically called for when features that are cannot be readily targeted are required. These features might include edge points, holes or scribe lines. For this particular measurement datum button locations and pad plane points were required.

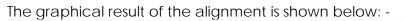
To work in M-Mode a coordinated reference frame is required. This reference frame is used to determine the location of the cameras after each flash. Fortunately no additional work is required to establish this reference as it was established during the initial single camera network. Once an image has been acquired the cameras are capable of determining their orientation relative to the object. This information is presented graphically so that the user can decide whether the positioning is suitable for the area of interest. The set up that was used is shown below:

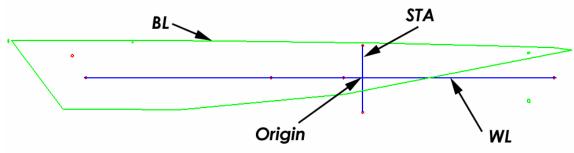

Measuring with the hand held probes is as simple as pointing the cameras roughly at the area of interest, placing the probe on the point of interest and pressing the hand held trigger. Each camera images the probe, determines the type of probe being used and sends this information to the system laptop. V-STARS then takes this data and computes the XYZ location of the probe tip. Up to 16 different probes are available. Each of these has a unique pattern of dots and is automatically identified by the system. The probes also have a variety of tips available. The probes typically come with a 3mm or 6mm ball tip. Scribe tips are also available.

Once all the points of interest are measured the cameras are simply moved to the next position. Camera re-orientation is carried out automatically. The cameras orientate themselves during each point measurement, which means that the cameras or the object can be vibrating without any ill effect to the resulting point data.

A total of six datum buttons were measured. Four of these were located along the Water Line. The remaining two buttons were in the Station direction. The buttons were measured by collecting six points around the circumference. These points were then used to create the center point.

Numbering Guide:


The numbering used on the jig is shown in the image below.



Alignment:

Typically one of the last tasks is alignment into the coordinate system of the object being measured. There are two basic types of alignment. The first is a simple Axis or 3-2-1 alignment. This alignment is based on three points – an origin, an axis point and a third point to define the plane in which the axis lies. The second type of alignment uses point correspondence from a known alignment (such as the CAD model) to transform the data into that coordinate system. This is a "best-fit" solution and is preferred as it involves greater redundancy.

For this particular project an axis alignment was completed. This was based on the derived Water Line and Station Lines and clocked through the Butt Line Plane. The Water Line and Station Line were intersected to form an Origin point. This Origin (BL = 57.78, WL = 100.00, STA = 1086), a second point on the Water Line and a third point on the Station line were used to create the Axis Alignment.

Analysis:

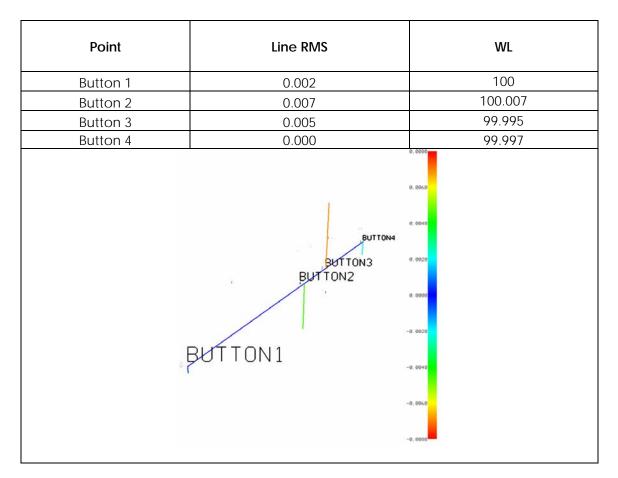
The analysis competed is shown in the tables below.

BL Data Based	on Alignment
22 2 a.a. 2 a.c. 2	ginneri

PT	Actual	Nominal	Difference	[PT	Actual	Nominal	Difference
1	57.805	57.780	0.025		24	57.806	57.780	0.026
2	57.780	57.780	0.000		25	57.801	57.780	0.021
3	57.782	57.780	0.002		26	57.796	57.780	0.016
4	57.783	57.780	0.003		27	57.797	57.780	0.017
5	57.769	57.780	-0.011		28	57.790	57.780	0.010
6	57.760	57.780	-0.020		29	57.796	57.780	0.016
7	57.748	57.780	-0.032		30	57.793	57.780	0.013
8	57.758	57.780	-0.022		31	57.769	57.780	-0.011
9	57.754	57.780	-0.026		32	57.759	57.780	-0.022
10	57.761	57.780	-0.019		33	57.744	57.780	-0.036
11	57.774	57.780	-0.006		34	57.745	57.780	-0.035
12	57.779	57.780	-0.001		35	57.747	57.780	-0.034
13	57.772	57.780	-0.008		36	57.765	57.780	-0.015
14	57.767	57.780	-0.013		37	57.807	57.780	0.027
15	57.779	57.780	-0.001		38	57.804	57.780	0.024
16	57.793	57.780	0.013		39	57.794	57.780	0.014
17	57.796	57.780	0.016		40	57.789	57.780	0.009
18	57.798	57.780	0.018		41	57.748	57.780	-0.032
20	57.816	57.780	0.036		42	57.750	57.780	-0.030
21	57.811	57.780	0.031		43	57.717	57.780	-0.063
22	57.810	57.780	0.029		44	57.830	57.780	0.050
23	57.802	57.780	0.021			Deviatior	n > 0.060"	

BL RMS = 0.024"

PT	Plane RMS(")	PT	Plane RMS(")	
1	0.025	24	0.026	
2	0.000	25	0.021	0,0400
3	0.002	26	0.016	0.000
4	0.003	27	0.017	
5	-0.011	28	0.010	0.0300
6	-0.020	29	0.016	
7	-0.032	30	0.013	0.0200
8	-0.022	31	-0.011	
9	-0.026	32	-0.022	44 0.0100
10	-0.019	33	-0.036	43 0.0100
11	-0.006	34	-0.035	- 36
12	-0.001	35	-0.034	0,0000
13	-0.008	36	-0.015	
14	-0.013	37	0.027	-0.0100
15	-0.001	38	0.024	
16	0.013	39	0.014	-0.0200
17	0.016	40	0.009	PI
18	0.018	41	-0.032	-0, 0300
20	0.036	42	-0.030	-0, 0300
21	0.031	43	-0.063	
22	0.030	44	0.050	-0, 0400
23	0.022	D	eviation > 0.060"	


End Stop Data Based on Plane Fit

End Stop RMS = 0.001"

Point	Plane RMS	STA
END1	-0.001	918.760
END2	0.001	918.770
END3	0.002	918.766
END4	0.001	918.773
END5	-0.002	918.771
END6	-0.001	918.755
END7	0.001	918.760

WL Data Based on Line Fit

WL Line RMS = 0.004"

Deviations are based on button points projected to the BL Plane. Without projection the Water Line fit yields an accuracy RMS of 0.044".

Time Summary:

The following is an estimate of the time taken to complete the measurement.

Targeting	10 minutes
Photography	2 minutes
Processing	5 minutes
Probing*	20 minutes
Alignment	13 minutes
Analysis	10 minutes
Total	60 minutes

With the correct targeting and a better understanding of the measurement, the probing could be reduced to <40 minutes

Object 2 – GE F110 Frame

Documentation:

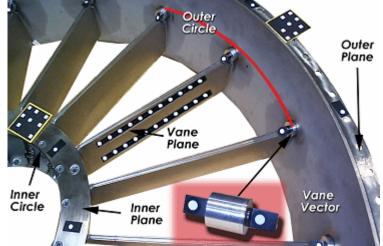
The following documentation is included in this report for this measurement.

- A report outlining the results.
- Coordinate data for the measured component.
- Geometric analysis.

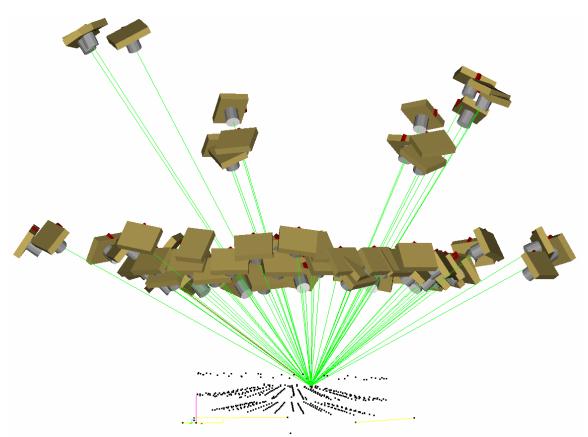
Measurement Procedure:

Targeting:

The following targeting was used


- 1. Approximately 20 targets on each of the 17 vanes.
- 2. Targets on the inner and outer planes.
- 3. Targets on the inner circle.
- Vector targets in each of the 17 holes.
- 5. Coded targets.
- 6. AutoBar.
- 7. Two scale Bars.

All of the necessary features


could be targeted and therefore no probing was necessary.

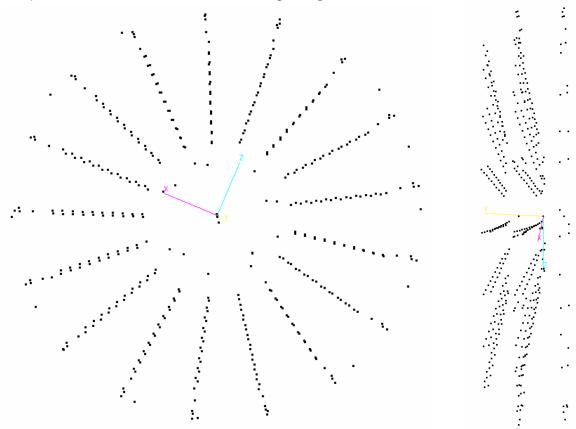
Photography:

A total of 70 photographs were taken of the frame. The number of photos taken was high due to the steep angle to the points on the bottom of the vane. These points significantly complicated the measurement. The photography for the frame was completed in approximately 5 minutes.

Camera station locations for the measurement are shown in the diagram below. Also shown is a sample intersection pattern for a point.

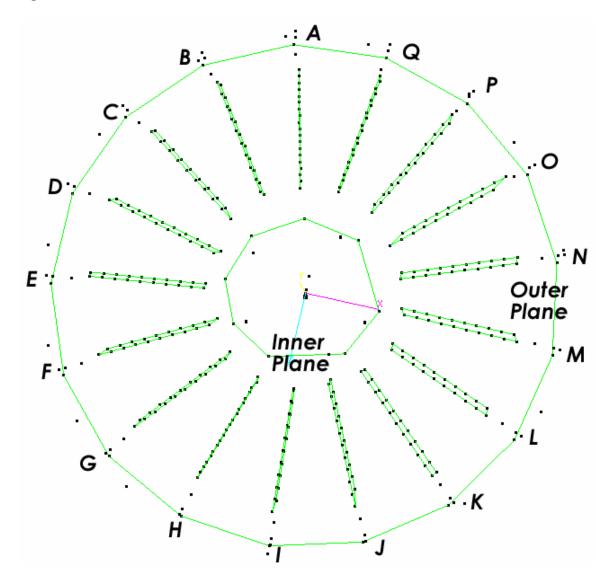
Processing:

Seen below is an image taken as part of the jig measurement.



Results:

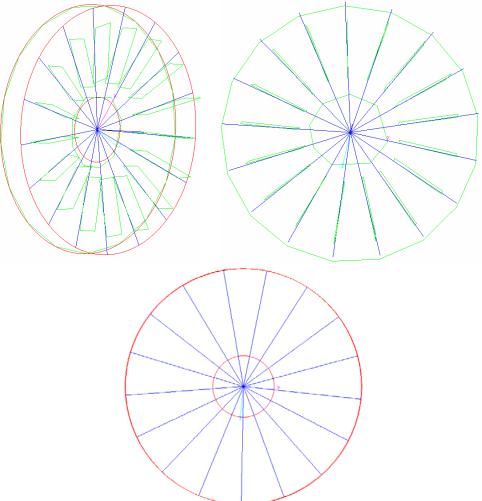
The following is a summary of the measurement statistics from the measurement of the frame


No. of photos	70	
No. of points	467	
No. of scales	2	
Scale Agreement	0.00	05"
Accuracy RMS(") X,Y,Z	Х	0.0005
	Y	0.0005
	Z	0.0006

The point cloud is shown in the following images.

Numbering Guide:

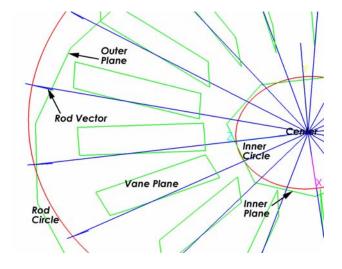
The following numbering scheme was adopted. Each of the vanes was assigned a letter from A to Q respectively. Vector or surface data was then referenced against this letter.



Alignment:

For the sake of simplicity an Axis alignment was carried out using the frame centerline and one of the reference planes.

Analysis:


The analysis competed is shown in the tables below. Also shown below are some graphical representations of the data.

Inner and Outer Planes

	RMS (")
Inner Plane	0.0001
Outer Plane	0.0018
Parallelism	0.0023°
Inner - Outer Plane Distance	1.962

This data indicates that the planes have a high level of flatness and parallelism.

17 Vanes Planes Summary

		Adjacent Plane			
VANE	RMS(")	Angle	Measured ^o	Theoretical°	Difference°
А	0.0144	Q to A	21.1873	21.1765	0.0108
В	0.0128	A to B	21.2916	21.1765	0.1151
С	0.0113	B to C	21.0647	21.1765	-0.1118
D	0.0154	C to D	21.2227	21.1765	0.0462
E	0.0119	D to E	21.0901	21.1765	-0.0864
F	0.0145	E to F	21.1875	21.1765	0.0110
G	0.0131	F to G	21.2029	21.1765	0.0264
Н	0.0147	G to H	21.1528	21.1765	-0.0237
1	0.0121	H to I	21.1301	21.1765	-0.0464
J	0.0133	I to J	21.2829	21.1765	0.1064
К	0.0160	J to K	21.1765	21.1765	0.0000
L	0.0113	K to L	21.0921	21.1765	-0.0844
Μ	0.0144	L to M	21.3237	21.1765	0.1472
Ν	0.0108	M to N	21.1117	21.1765	-0.0648
0	0.0120	N to O	21.0841	21.1765	-0.0924
Р	0.0134	O to P	21.2611	21.1765	0.0846
Q	0.0149	P to Q	21.0401	21.1765	-0.1364
А	0.0144	Q to A	21.1873	21.1765	0.0108
		SUM	359.9019	360	

Inner Circle Summary

Radius	5.0241"
Total RMS	0.0003"

Vector Rod Data

The 17 vectors rods were used to create a surface point for each of the holes in the frame. These points are reported in the table below. Also reported is the circle and plane fit for these points.

Radius	19.3268"
Total Circle RMS	0.0025"
Total Plane RMS	0.0027"
Distance from Rod Center to Frame Centerline	0.0004"

The plane and circle have higher RMS values than expected. More than likely this is due to the targeting adapter and the positioning of the target. The vector rod manufactured didn't have a lip to prevent it from slipping past the end of the plane.

				Deviat	ons (")
Point Label	Х	Y	Z	Circle	Plane
А	-4.972	2.951	-18.595	0.001	0.003
В	-11.287	3.714	-15.426	0.000	0.003
С	-16.034	4.287	-10.171	-0.006	0.002
D	-18.588	4.598	-3.549	0.003	0.000
E	-18.583	4.597	3.555	-0.001	0.001
F	-16.039	4.293	10.181	0.004	-0.003
G	-11.290	3.719	15.424	0.001	-0.003
Н	-4.969	2.958	18.591	-0.002	-0.004
I	2.056	2.105	19.249	0.001	0.000
J	8.836	1.282	17.298	-0.004	0.004
К	14.467	0.603	13.018	0.000	0.004
L	18.176	0.157	6.978	-0.001	0.002
Μ	19.473	0.000	0.000	0.002	0.002
Ν	18.176	0.161	-6.986	0.001	-0.002
0	14.465	0.613	-13.025	0.002	-0.006
Р	8.833	1.289	-17.305	-0.001	-0.002
Q	2.047	2.106	-19.247	-0.002	0.000

Vane to Reference Plane Angle

Vane	Angle ^o
А	88.6190
В	88.6166
С	88.5503
D	88.3124
E	88.3910
F	88.4911
G	88.4005
Н	88.4570
I	88.3770
J	88.7723
К	88.3932
L	88.5996
М	88.9438
N	88.9340
0	88.5340
Р	88.6417
Q	88.4335

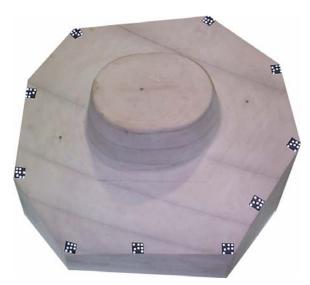
The pitch of the vane seems fairly consistent. No theoretical value was available to compare the measured data to.

Angle between rod lines

1	1
Q to A	20.5567
A to B	21.0178
B to C	20.8649
C to D	21.1269
D to E	20.2966
E to F	21.0413
F to G	19.8774
G to H	21.2739
H to I	20.7580
l to J	20.6375
J to K	21.1384
K to L	20.4520
L to M	20.5305
M to N	21.1436
N to O	20.5350
O to P	20.8119
P to Q	20.6105
Q to A	20.5567
SUM	352.6729

Angle between rod lines and adjacent vane

А	0.5484
В	0.6768
С	0.8824
D	1.1644
E	0.8185
F	1.1220
G	0.2101
Н	0.7860
_	0.8446
J	0.7123
К	1.0141
L	0.8333
М	0.5286
Ν	0.9746
0	0.7806
Р	0.7968
Q	0.7396


This data seems to indicate that there are vanes that have significant angular discrepancies. Vane F and G are the most severe. It is interesting to note that these are adjacent to one another.

Time Summary

The following is an estimate of the time taken to complete the measurement.Targeting30 minutesPhotography5 minutesProcessing10minutesAnalysis15 minutesTotal60 minutes

Object 3 – GKN Search light lay up mould

The project was completed in three parts. The first part was to coordinate and align the work piece. In the second part the probe was used to probe the edge of part, scribe lines and other details. In the final part, PRO-SPOT was used to gather surface information.

Documentation:

The following documentation is included in this report for this measurement.

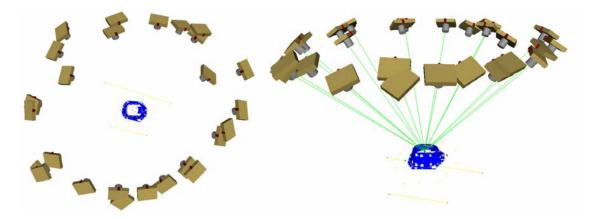
- A report outlining the results.
- Coordinate data for the measured component.
- Geometric analysis
- Comparison to IGES file

Measurement Procedure:

Targeting:

The following targeting was used

- 1. Projected targets from PRO-SPOT
- 2. Tooling targets
- 3. Coded targets around the edge
- 4. AutoBar
- 5. Two scale Bars.


It was necessary to probe the edge of part, a reference circle and four crosses using the hand-held probes.

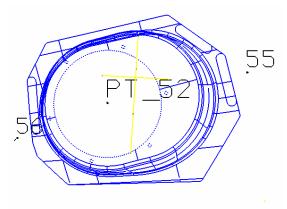
Photography – Part 1:

A total of 26 photographs were taken of the mould. The photography for the piece was completed in approximately 5 minutes.

Camera station locations for the measurement are shown in the diagram below. Also shown is a sample intersection pattern for a point.

Processing – Part 1:

The processing consumed approximately five minutes.


Results – Part 1:

The following is a summary of the measurement statistics from the first part of the mould measurement.

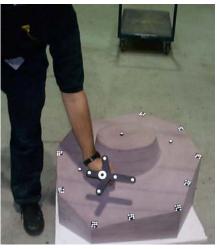
No of photos	26	
No of points	30	
No of scales	2	
Scale Agreement	0.000)7"
Accuracy RMS(") X,Y,Z	Х	0.0005
	Y	0.0006
	Z	0.0005

Numbering Guide - Part 1

For the most part there was no defined numbering scheme. The only points assigned labels were the ones needed to complete the alignment to the design data. These are shown in the adjacent image.

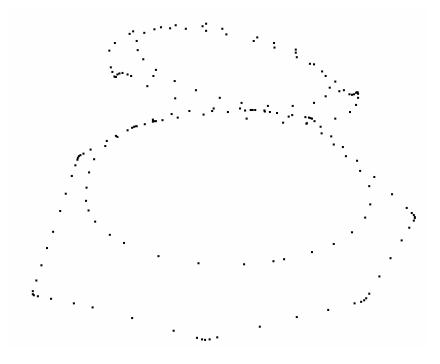
Alignment:

The alignment was a best-fit transformation to three tooling points. The results of the alignment are shown in the table below.

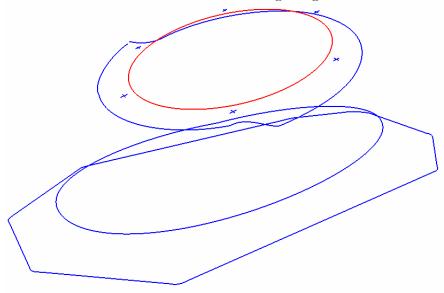

Point	Х	Υ	Z	Total
55	0.0037"	0.0000"	0.0013"	0.0039"
56	-0.0048"	0.0000"	-0.0006"	0.0048"
PT_52	0.0011"	-0.0000"	-0.0007"	0.0013"

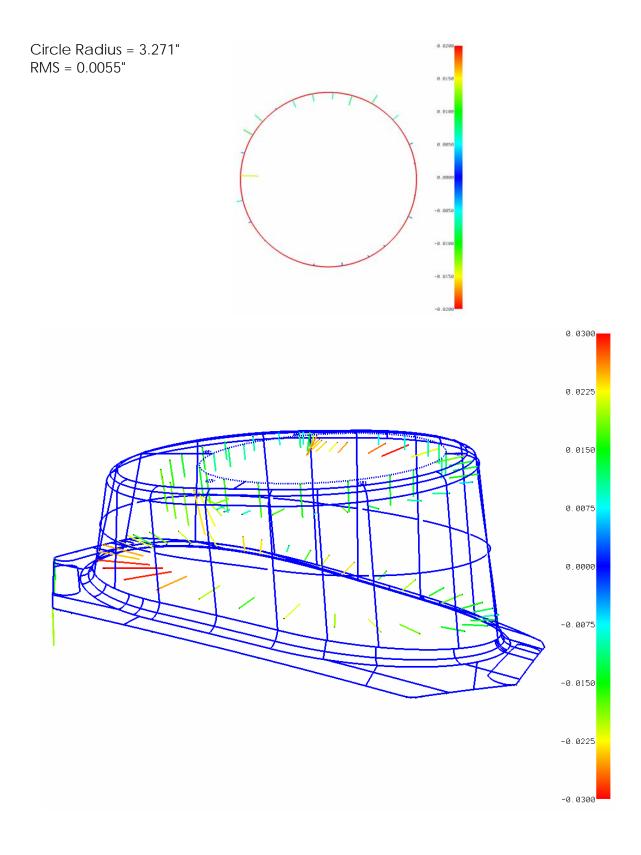
Probing – Part 2:

The following data was collected using the handheld probes.


- 1. EOP.
- 2. Scribe lines.
- 3. Center circle.
- 4. Six crosses.

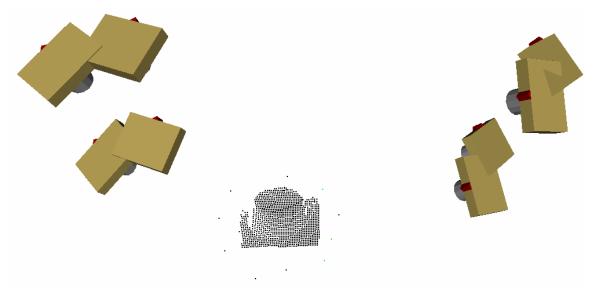
The cameras were set up as shown below.




A total of 180 points were collected with the probe. These are show in the point cloud below.

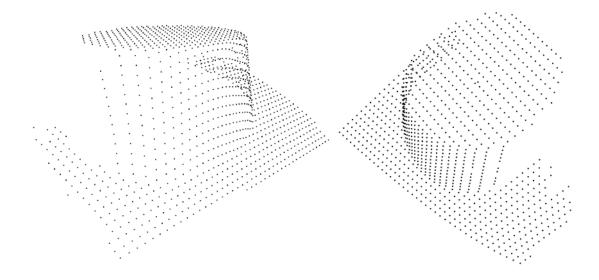
The features collected are shown in the following diagram.

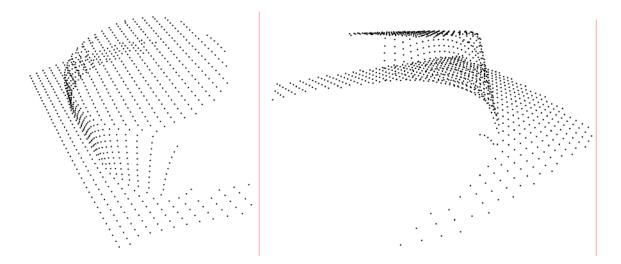
The data collected was then compared to the IGES model. The circle was also computed.


Surface Measurement - Part 3

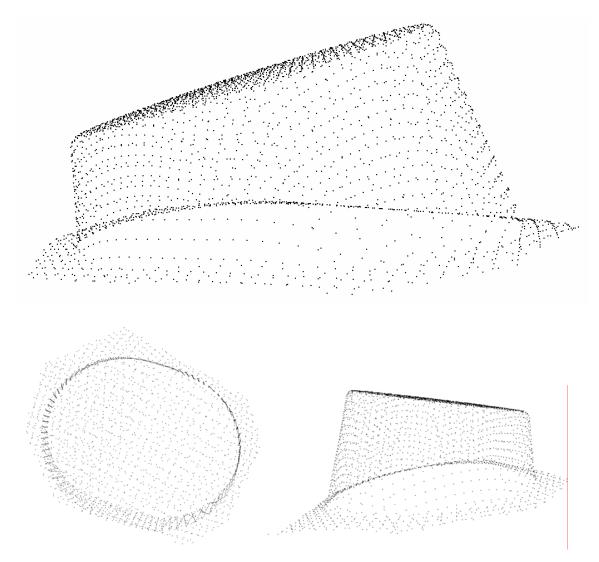
The final part of the measurement involved the determination of surface points. The points were generated using the target projection system known as PRO-SPOT. A modeling light was used to focus and position the array of targets. Care was taken to ensure that the projected targets did not fall on any of the reference targets. To cover the component it was necessary to complete the measurement in four set-ups. These corresponded to each of the four sides of the piece. One of the set-ups is shown in the image below.

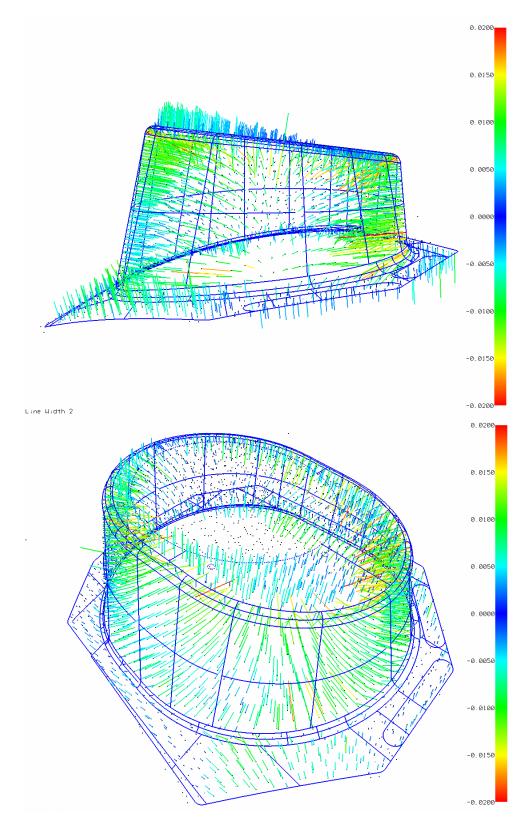
A total of eight photographs were taken at each of the four positions. The data sets were combined by using the coded targets placed around the periphery of the object.

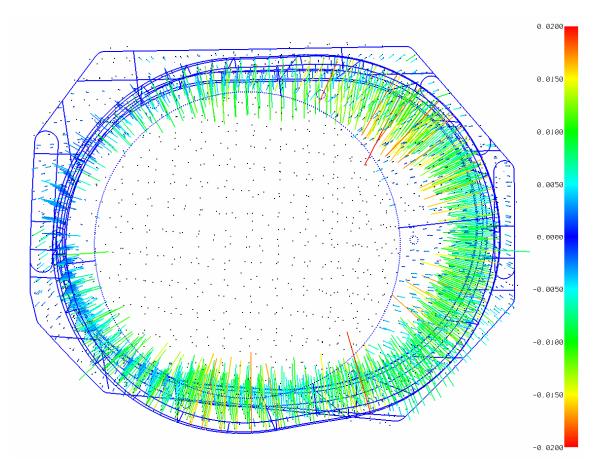

A typical camera network is shown in the image below:



The results of the four networks are summarized in the following table

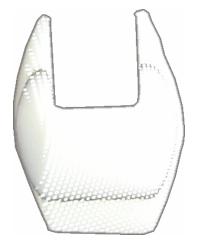

Set-up	# of Points	X RMS	Y RMS	Z RMS
1	1172	0.0002	0.0002	0.0003
2	979	0.0002	0.0003	0.0003
3	915	0.0002	0.0002	0.0002
4	1056	0.0001	0.0002	0.0002
Total	4122			


The individual models are shown in the images below.



The combined model is shown below.

The final task was to measure the acquired surface data to the IGES model. This is shown below:



Time Summary

The following is an estimate of the time taken to complete the measurement.

Targeting Photography Part 1 Probing PRO-SPOT Processing Total 2 minutes 3 minutes 5 minutes 40 minutes (10 minutes per set-up) 10 minutes 60 minutes

Object 4 – EH101 Foam Inlet Piece

Documentation:

The following documentation is included in this report for this measurement.

- Coordinate data for the measured component.
- Comparison to IGES Model.

Measurement Procedure:

The following targeting was used

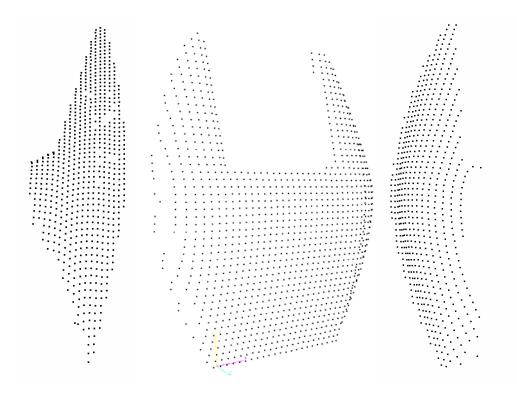
- 1. Projected targets from PRO-SPOT.
- 2. Coded targets around the case.
- 3. AutoBar.
- 4. Two scale Bars.

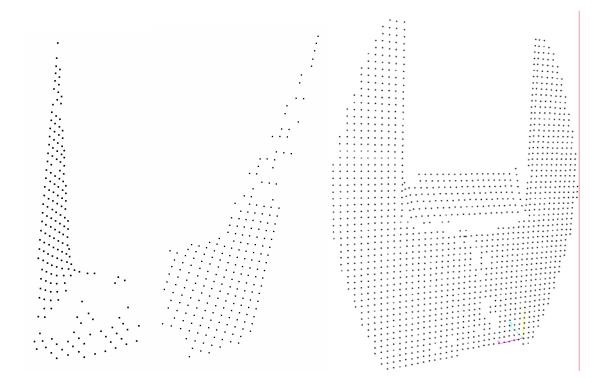
The measurement of this piece proved to be difficult due to its flimsy and porous nature. In order to capture the front and rear sides simultaneously it was necessary to prop the piece up as shown. This worked well apart from the fact that there were questions of the stability of the piece during the measurement.

In any case, it would be advisable to make future measurements in an enclosed room rather than on an open floor.

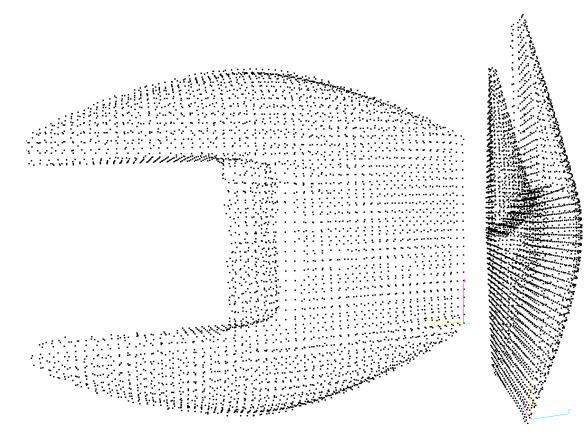
The measurement was completed in a very similar fashion to the GKN piece. In this instance due to the complex nature of the part it was covered in six set-ups.

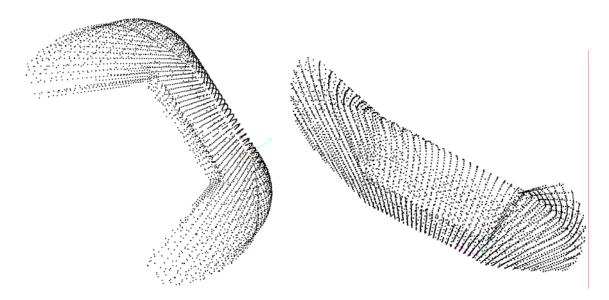
A sample of the target swath is shown here.

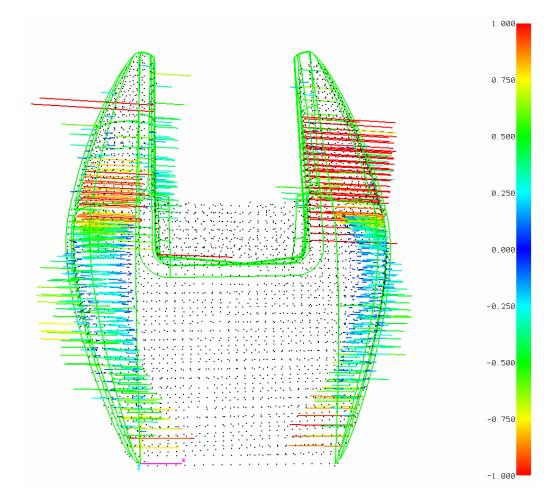


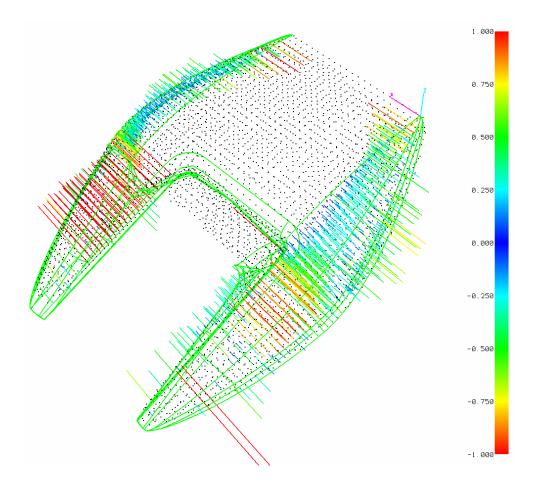


Set-up	# of Points	X RMS(mm)	Y RMS(mm)	Z RMS(mm)
1	1176	0.014	0.021	0.020
2	719	0.013	0.020	0.021
3	661	0.014	0.022	0.019
4	225	0.015	0.019	0.018
5	262	0.017	0.021	0.020
6	1607	0.014	0.020	0.021
Total	4650			


The results of the six networks are summarized in the following table


The six point clouds and the combined cloud are shown below.




The combined model is seen below.

An axis alignment was completed in order to roughly align the points to the surface. Unfortunately no surface alignment was possible and the alignment had to be minimized manually by shifting the point cloud to minimize the surface deviations. The deviations are shown below.

Time Summary

The following is an estimate of the time taken to complete the measurement.

Targeting Photography Initial PRO-SPOT Processing Total 2 minutes 3 minutes 60 minutes (10 minutes per set-up) 15 minutes 80 minutes

PRO-SPOT Discussion

The PRO-SPOT projector system has demonstrated how large volumes of high accuracy surface data can be collected very quickly. Once again the results of the measurement are very accurate and more importantly were produced quickly.

Advantages of this technology over other measurement technologies include: -

1. Non-contact

The measurement technique is completely non-contact. There is no surface deviation due to measurement contact with the surface.

2. Variable data collection rates

The number of points collected on the surface can vary from as few as 600 to as many as 6,000. The time needed to collect the point data is the same regardless of the different point densities.

3. Fast Data Acquisition

The information necessary to create the point data is collected in a matter of minutes. This makes the system ideal for a production environment where time constraints are critical.

4. Flexibility

The PRO-SPOT system is flexible enough to handle a wide variety of surface measurement tasks. For a large component, the projector can be moved to a new set up and the data incorporated together. Alternatively a second projector could be added.

5. Portability

The system can easily be packed up and carried to a supplier or customer for on site measurement tasks.

Concluding Remarks:

The measurements undertaken have shown that V-STARS and the PRO-SPOT target projector can be a very powerful measurement tools. The results of the measurements are very accurate and more importantly were produced quickly. The four object measured also demonstrate the measurement flexibility of V-STARS.